CS 59300 – Algorithms for Data Science Classical and Quantum approaches

Lecture 12 (10/21)

Stochastic Calculus

https://ruizhezhang.com/course_fall_2025.html

Motivation

- Stochastic calculus is the mathematical tool to study sampling and generative modeling in a continuous space (and continuous time)
 - An analog is the traditional calculus for Gradient flow ←→ Gradient descent

- It is also a prerequisite for appreciating Eldan's stochastic localization
 - In the mean-field approximation, we use only a single "snapshot" of the stochastic localization at a fixed time

October 21, 2025

Today's plan

- 1. Drift-diffusion processes
- 2. Markov semigroup
- 3. Optimal transport
- 4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi '25

Today's plan

- 1. Drift-diffusion processes
- 2. Markov semigroup
- 3. Optimal transport
- 4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi '25

Brownian motion

 $(B_t)_{t\geq 0} \subset \mathbb{R}^d$ is a stochastic process (random sequence of vectors indexed by t) such that:

- Starts at origin: $\mathbf{B}_0 = 0$ is the origin in \mathbb{R}^d
- Continuous paths: With prob. 1 over the randomness, $t \mapsto B_t$ is continuous
- Independent increments: For all $0=t_0< t_1< \cdots < t_k$, the random vectors $\pmb{B}_{t_{i+1}}-\pmb{B}_{t_i}$ for $0\leq i< k$ are mutually independent
- Gaussian increments: For all $0 \le s \le t$, $B_t B_s \sim N(0, (t-s)I)$

The probability space that Brownian motion is defined on is denoted $\{\mathcal{F}_t\}_{t\geq 0}$, a filtration satisfying $\mathcal{F}_s\subseteq \mathcal{F}_t$ for all $0\leq s\leq t$. We say that Brownian motion is a stochastic process adapted to the filtration $\{\mathcal{F}_t\}_{t\geq 0}$

" \mathcal{F}_t contains the information of the randomness used up to time t"

Stochastic integrals

Given continuous process $(\mathbf{H}_t)_{t\geq 0} \in \mathbb{R}^{d \times d}$ adapted to the filtration generated by $(\mathbf{B}_t)_{t\geq 0}$, the Itô integral

$$\mathbf{x}_t = \int_0^t \mathbf{H}_s \, \mathrm{d} \boldsymbol{B}_s$$

is the stochastic process whose value at time t is the random vector given by taking the probability limit over meshes $P = \{t_k\}_{k \in \lceil |P| \rceil} \subset [0, t]$ such that $0 = t_0 < \dots < t_{|P|} = t$:

$$\int_0^t \mathbf{H}_S \, d\mathbf{B}_S = \lim_{\|P\|_{\text{gap}} \to 0} \sum_{j=1}^k \mathbf{H}_{t_j} \cdot \left(\mathbf{B}_{t_{j+1}} - \mathbf{B}_{t_j} \right)$$

where $||P||_{\text{gap}} := \max_{k \in [|P|]} |t_k - t_{k-1}|$

October 21, 2025

Stochastic integrals

The Itô integral $\mathbf{x}_t = \int_0^t \mathbf{H}_s \, \mathrm{d}\boldsymbol{B}_s$ is a continuous martingale

- Continuity: With prob. 1 over the randomness, $t \mapsto \mathbf{x}_t$ is continuous
- Martingale: $\mathbb{E}\left[\int_{S}^{t} \mathbf{H}_{S} d\mathbf{B}_{S} \mid \mathbf{\mathcal{F}}_{S}\right] = 0$
- Itô isometry:

$$\mathbb{E}\left[\left\|\int_0^t \mathbf{H}_S \, \mathrm{d}\boldsymbol{B}_S\right\|^2\right] = \mathbb{E}\left[\int_0^t \|\mathbf{H}_S\|_F^2 \, \mathrm{d}B_S\right]$$

Intuition:
$$\mathbb{E}[(a_1g_1 + a_2g_2 + \dots + a_kg_k)^2] = a_1^2 + \dots + a_k^2$$
 for $g_1, \dots, g_k \sim N(0, 1)$
" $d\mathbf{B}_t^2 = dt$ " (because $\mathbf{B}_{t+dt} - \mathbf{B}_t \sim \mathcal{N}(0, dt)$)

Drift-diffusion processes

A drift-diffusion process $\{\mathbf{x}_t\}_{t\geq 0}$ on \mathbb{R}^d is driven by a vector-valued function $\boldsymbol{\mu} \colon \mathbb{R}^d \to \mathbb{R}^d$ and a matrix-valued function $\boldsymbol{\sigma} \colon \mathbb{R}^d \to \mathbb{R}^{d \times d}$, and captured by the stochastic differential equation (SDE):

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t)dt + \boldsymbol{\sigma}(\mathbf{x}_t)d\boldsymbol{B}_t$$

We can write this stochastic process in integral form:

$$\mathbf{x}_t = \mathbf{x}_0 + \int_0^t \boldsymbol{\mu}(\mathbf{x}_t) dt + \int_0^t \boldsymbol{\sigma}(\mathbf{x}_t) d\boldsymbol{B}_t$$
 (Itô process)

Deterministic force (μdt)

Random fluctuation (σdB_t)

Drift-diffusion processes

A drift-diffusion process $\{\mathbf{x}_t\}_{t\geq 0}$ on \mathbb{R}^d is driven by a vector-valued function $\boldsymbol{\mu} \colon \mathbb{R}^d \to \mathbb{R}^d$ and a matrix-valued function $\boldsymbol{\sigma} \colon \mathbb{R}^d \to \mathbb{R}^{d \times d}$, and captured by the stochastic differential equation (SDE):

$$d\mathbf{x}_t = \boldsymbol{\mu}(\mathbf{x}_t)dt + \boldsymbol{\sigma}(\mathbf{x}_t)d\boldsymbol{B}_t$$

We can write this stochastic process in integral form:

$$\mathbf{x}_t = \mathbf{x}_0 + \int_0^t \boldsymbol{\mu}(\mathbf{x}_t) dt + \int_0^t \boldsymbol{\sigma}(\mathbf{x}_t) d\boldsymbol{B}_t$$
 (Itô process)

- Technically need to check such a process exists and is uniquely defined, which holds under mild conditions on μ and σ (e.g. Lipschitzness)
- SDEs can be defined w.r.t. more general process, e.g. μ_t and σ_t
- Euler–Maruyama discretization: $\hat{x}_{(k+1)h} \leftarrow \hat{x}_{kh} + h\mu(\hat{x}_{kh}) + \sqrt{h} \sigma(\hat{x}_{kh})g$ $g \sim \mathcal{N}(0, I)$

October 21, 2025

Important example: Langevin diffusion

Given differentiable $V: \mathbb{R}^d \to \mathbb{R}$, consider

$$d\mathbf{x}_t = -\nabla V(\mathbf{x}_t) dt + \sqrt{2} d\mathbf{B}_t$$
 "gradient descent + noise"

i.e.
$$\mu = -\nabla$$
 and $\sigma = \sqrt{2}I$

- $\pi^* \propto e^{-V}$ is a stationary distribution of Langevin diffusion (and is unique under certain assumptions on V)
- By Euler-Maruyama discretization, we get the Unadjusted Langevin Algorithm (ULA):

$$\hat{x}_{(k+1)h} \leftarrow \hat{x}_{kh} - h\nabla V(x_t) + \sqrt{2h} g \text{ for } g \sim \mathcal{N}(0, I)$$

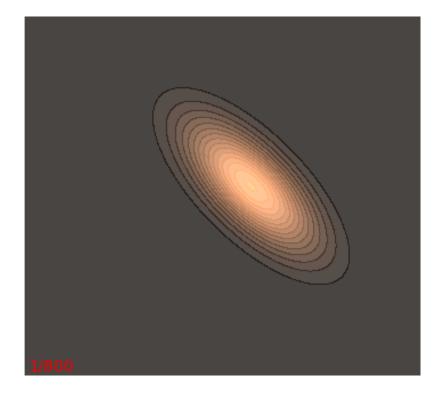
October 21, 2025

Ornstein-Uhlenbeck process

If we take $V(x) = ||x||^2/2$, we have

$$\mathrm{d}\mathbf{x}_t = -\mathbf{x}_t \; \mathrm{d}t + \sqrt{2} \; \mathrm{d}\boldsymbol{B}_t$$

whose stationary distribution is given by N(0, Id).



Stochastic chain rule

$$\mathrm{d}f(g) = f'(g) \cdot \mathrm{d}g$$

Itô's lemma. Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice-differentiable, and suppose $\{\mathbf{x}_t\}_{t \geq 0}$ follows the SDE: $\mathrm{d}\mathbf{x}_t = \boldsymbol{\mu}_t(\mathbf{x}_t)\mathrm{d}t + \boldsymbol{\sigma}_t(\mathbf{x}_t)\mathrm{d}\boldsymbol{B}_t$

Then $\{f(\mathbf{x}_t)\}_{t\geq 0}$ is a stochastic process following the SDE:

$$df(\mathbf{x}_t) = \left(\langle \nabla f(\mathbf{x}_t), \boldsymbol{\mu}_t(\mathbf{x}_t) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}_t), \boldsymbol{\sigma}_t(\mathbf{x}_t) \boldsymbol{\sigma}_t(\mathbf{x}_t)^{\mathsf{T}} \rangle \right) dt + \langle \nabla f(\mathbf{x}_t), \boldsymbol{\sigma}_t(\mathbf{x}_t) d\boldsymbol{B}_t \rangle$$

Proof sketch:

- $\mathbf{x}_{t+h} \approx \mathbf{x}_t + h\mu(\mathbf{x}_t) + \sqrt{h} \, \sigma(\mathbf{x}_t) g$ for $g \sim \mathcal{N}(0, I)$
- Taylor expand $f(\mathbf{x}_{t+h})$ and only keep first-order (i.e. $\mathcal{O}(h)$) terms:

$$df(\mathbf{x}_{t}) \approx f(\mathbf{x}_{t+h}) - f(\mathbf{x}_{t}) \approx \left\langle \nabla f(\mathbf{x}_{t}), h\mu(\mathbf{x}_{t}) + \sqrt{h}\sigma(\mathbf{x}_{t})g \right\rangle + \frac{1}{2} \left\langle \nabla^{2} f(\mathbf{x}_{t}), h\sigma(\mathbf{x}_{t})gg^{\mathsf{T}}\sigma(\mathbf{x}_{t})^{\mathsf{T}} \right\rangle$$
$$\approx h(\left\langle \nabla f(\mathbf{x}_{t}), \mu(\mathbf{x}_{t}) \right\rangle + \left\langle \nabla^{2} f(\mathbf{x}_{t}), \sigma(\mathbf{x}_{t})\sigma(\mathbf{x}_{t})^{\mathsf{T}} \right\rangle) + \frac{\sqrt{h}}{2} \left\langle \nabla f(\mathbf{x}_{t}), \sigma(\mathbf{x}_{t})g \right\rangle$$

October 21, 2025

Stochastic chain rule

$$\mathrm{d}f(g) = f'(g) \cdot \mathrm{d}g$$

Itô's lemma. Let $f: \mathbb{R}^d \to \mathbb{R}$ be twice-differentiable, and suppose $\{\mathbf{x}_t\}_{t \geq 0}$ follows the SDE: $\mathrm{d}\mathbf{x}_t = \boldsymbol{\mu}_t(\mathbf{x}_t)\mathrm{d}t + \boldsymbol{\sigma}_t(\mathbf{x}_t)\mathrm{d}\boldsymbol{B}_t$

Then $\{f(\mathbf{x}_t)\}_{t\geq 0}$ is a stochastic process following the SDE:

$$df(\mathbf{x}_t) = \left(\langle \nabla f(\mathbf{x}_t), \boldsymbol{\mu}_t(\mathbf{x}_t) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}_t), \boldsymbol{\sigma}_t(\mathbf{x}_t) \boldsymbol{\sigma}_t(\mathbf{x}_t)^{\mathsf{T}} \rangle \right) dt + \langle \nabla f(\mathbf{x}_t), \boldsymbol{\sigma}_t(\mathbf{x}_t) d\boldsymbol{B}_t \rangle$$

Example:

- Consider the Langevin diffusion: $dx_t = -\nabla V(x_t) dt + \sqrt{2} dB_t$
- By Itô's lemma,

$$\mathrm{d}f(\mathbf{x}_t) = (-\langle \nabla f, \nabla V \rangle + \Delta f) \mathrm{d}t + \sqrt{2} \langle \nabla f, \mathrm{d}\boldsymbol{B}_t \rangle$$
$$\Delta f \coloneqq \mathrm{tr}[\nabla^2 f]$$

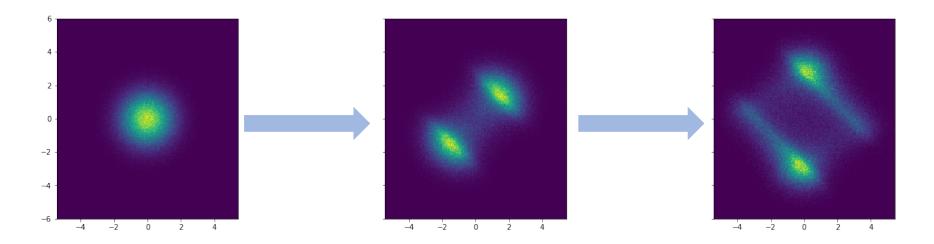
October 21, 2025

Today's plan

- 1. Drift-diffusion processes
- 2. Markov semigroup
- 3. Optimal transport
- 4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi '25

Dual view on SDEs



- Move to the density space $\mathcal{P}(\mathbb{R}^d)$ (i.e. the set of continuous prob. densities on \mathbb{R}^d)
- In discrete setting, the evolution of prob. density is characterized by the Markov chain transition matrix $P \in \mathbb{R}^{D \times D}$: $\pi_{t+1} = P\pi_t$
- For a drift-diffusion process $\{\mathbf x_t\}_{t\geq 0}$, we define the Markov semigroup $\{P_t\}_{t\geq 0}$:

$$(P_t f)(\mathbf{x}) := \mathbb{E}[f(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x}] \quad \text{for } f: \mathbb{R}^d \to \mathbb{R}$$

Markov semigroup

• For a drift-diffusion process $\{\mathbf x_t\}_{t\geq 0}$, we define the Markov semigroup $\{P_t\}_{t\geq 0}$:

$$(P_t f)(\mathbf{x}) \coloneqq \mathbb{E}[f(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x}] \quad \text{for } f : \mathbb{R}^d \to \mathbb{R}$$

If
$$f = \mathbf{1}_S$$
 for a subset S, then $(P_t f)(\mathbf{x}) = \Pr[\mathbf{x}_t \in S \mid \mathbf{x}_0 = \mathbf{x}]$

Markov property:

$$P_{t+s}f = P_tP_sf = P_sP_tf \qquad \forall f: \mathbb{R}^d \to \mathbb{R}, \forall s, t \ge 0$$

Generator:

$$\mathcal{L}f \coloneqq \lim_{\eta \to 0} \frac{P_{\eta}f - f}{\eta}$$

Kolmogorov's backward equation. For all $t \geq 0$ and $f: \mathbb{R}^d \to \mathbb{R}$, it holds that

$$\frac{\partial}{\partial t} P_t f = \mathcal{L} P_t f = P_f \mathcal{L} f$$

Kolmogorov's equations

Kolmogorov's backward equation. For all $t \geq 0$ and $f: \mathbb{R}^d \to \mathbb{R}$, it holds that

$$\frac{\partial}{\partial t} P_t f = \mathcal{L} P_t f = P_f \mathcal{L} f$$

Proof.

$$\mathcal{L}P_{t}f = \lim_{\eta \to 0} \frac{P_{\eta} - P_{0}}{\eta} P_{t}f = \lim_{\eta \to 0} \frac{P_{t+\eta} - P_{t}}{\eta} f = \lim_{\eta \to 0} P_{t} \frac{P_{\eta} - P_{0}}{\eta} f = P_{t}\mathcal{L}f$$

Kolmogorov's forward equation. Let P_t^* be the adjoint of P_t :

$$\mathbb{E}[f(\mathbf{x}_t)] = \int \mathbb{E}[f(\mathbf{x}_t) \mid \mathbf{x}_0 = \mathbf{x}] \pi_0(\mathbf{x}) d\mathbf{x} = \int P_t f(\mathbf{x}) \pi_0(\mathbf{x}) d\mathbf{x} = \int f(\mathbf{x}) P_t^* \pi_0(\mathbf{x}) d\mathbf{x}$$

Then,

$$\langle P_t f, \pi_0 \rangle = \langle f, P_t^* \pi_0 \rangle$$

$$\frac{\partial}{\partial t} \underbrace{P_t^* \pi_0}_{\pi_t} = \mathcal{L}^* P_t^* \pi_0 = P_t^* \mathcal{L}^* \pi_0$$

Kolmogorov's forward equation for drift-diffusion process

$$\frac{\partial}{\partial t}\pi_t = \mathcal{L}^*\pi_t$$

Fokker-Planck equation. Let $\{x_t\}_{t\geq 0}$ follows $d\mathbf{x}_t = \boldsymbol{\mu}_t(\boldsymbol{x}_t)dt + \boldsymbol{\sigma}_t d\boldsymbol{B}_t$ and $\mathbf{x}_0 \sim \pi_0$. Then for all $t\geq 0$, denoting the law of x_t by π_t , we have

$$\frac{\partial}{\partial t} \pi_t(\mathbf{x}) = -\nabla \cdot \left(\boldsymbol{\mu}_t(\mathbf{x}) \pi_t(\mathbf{x}) \right) + \frac{1}{2} \sum_{i,j \in [d]} \frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} \left(\boldsymbol{\sigma}_t \boldsymbol{\sigma}_t^{\mathsf{T}}(\mathbf{x})_{ij} \pi_t(\mathbf{x}) \right)$$

Proof of Fokker-Planck equation

$$\bullet \quad \text{Recall that } \mathrm{d}f(\mathbf{x}) = \left(\langle \nabla f(\mathbf{x}), \pmb{\mu}_t(\mathbf{x}) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}), \pmb{\sigma}_t(\mathbf{x}) \pmb{\sigma}_t(\mathbf{x})^\mathsf{T} \rangle \right) \mathrm{d}t + \langle \nabla f(\mathbf{x}), \pmb{\sigma}_t(\mathbf{x}) \mathrm{d}\pmb{B}_t \rangle$$

• Then
$$d\mathbb{E}[f(\mathbf{x})] = \left(\langle \nabla f(\mathbf{x}), \mu_t(\mathbf{x}) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}), \sigma_t(\mathbf{x}) \sigma_t(\mathbf{x})^{\mathsf{T}} \rangle \right) dt$$

$$P_t f(\mathbf{x})$$

$$\mathcal{L}f(\mathbf{x})$$
martingale

• Thus, for all prob. densities π ,

$$\int f(\mathbf{x}) \mathcal{L}^* \pi(\mathbf{x}) \mathrm{d}\mathbf{x} = \int \mathcal{L} f(\mathbf{x}) \pi(\mathbf{x}) \mathrm{d}\mathbf{x} = \int \left(\langle \nabla f(\mathbf{x}), \boldsymbol{\mu}_t(\mathbf{x}) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}), \boldsymbol{\sigma}_t(\mathbf{x}) \boldsymbol{\sigma}_t(\mathbf{x})^\top \rangle \right) \pi(\mathbf{x}) \mathrm{d}\mathbf{x}$$
 (Integral by parts)
$$= \int \left(-f(\mathbf{x}) \nabla \cdot \left(\boldsymbol{\mu}_t(\mathbf{x}) \pi(\mathbf{x}) \right) - \frac{1}{2} \langle \nabla f(\mathbf{x}), \nabla \cdot \left(\boldsymbol{\sigma}_t(\mathbf{x}) \boldsymbol{\sigma}_t(\mathbf{x})^\top \pi(\mathbf{x}) \right) \rangle \right) \mathrm{d}\mathbf{x}$$
 (Integral by parts)
$$= \int f(\mathbf{x}) \left(-\nabla \cdot \left(\boldsymbol{\mu}_t(\mathbf{x}) \pi(\mathbf{x}) \right) + \frac{1}{2} \sum_{i,j \in [d]} \frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} \left(\boldsymbol{\sigma}_t \boldsymbol{\sigma}_t^\top (\mathbf{x})_{ij} \pi(\mathbf{x}) \right) \right) \mathrm{d}\mathbf{x}$$

October 21, 2025

Proof of Fokker-Planck equation

$$\bullet \quad \text{Recall that } \mathrm{d}f(\mathbf{x}) = \left(\langle \nabla f(\mathbf{x}), \pmb{\mu}_t(\mathbf{x}) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}), \pmb{\sigma}_t(\mathbf{x}) \pmb{\sigma}_t(\mathbf{x})^\mathsf{T} \rangle \right) \mathrm{d}t + \langle \nabla f(\mathbf{x}), \pmb{\sigma}_t(\mathbf{x}) \mathrm{d}\pmb{B}_t \rangle$$

• Then
$$d\mathbb{E}[f(\mathbf{x})] = \left(\langle \nabla f(\mathbf{x}), \mu_t(\mathbf{x}) \rangle + \frac{1}{2} \langle \nabla^2 f(\mathbf{x}), \sigma_t(\mathbf{x}) \sigma_t(\mathbf{x})^{\mathsf{T}} \rangle \right) dt$$

$$P_t f(\mathbf{x})$$

$$\mathcal{L}f(\mathbf{x})$$
martingale

• Thus, for all prob. densities π ,

$$\int f(\mathbf{x}) \mathcal{L}^* \pi(\mathbf{x}) d\mathbf{x} = \int f(\mathbf{x}) \left(-\nabla \cdot \left(\boldsymbol{\mu}_t(\mathbf{x}) \pi(\mathbf{x}) \right) + \frac{1}{2} \sum_{i,j \in [d]} \frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} \left(\boldsymbol{\sigma}_t \boldsymbol{\sigma}_t^{\mathsf{T}}(\mathbf{x})_{ij} \pi(\mathbf{x}) \right) \right) d\mathbf{x}$$

$$\mathcal{L}^* \pi(\mathbf{x})$$

Then it follows from the Kolmogorov's forward equation $rac{\partial}{\partial t}\pi_t=\mathcal{L}^*\pi_t$

Fokker-Planck equation for the Langevin diffusion

$$\frac{\partial}{\partial t} \pi_t(\mathbf{x}) = -\nabla \cdot \left(\boldsymbol{\mu}_t(\mathbf{x}) \pi_t(\mathbf{x}) \right) + \frac{1}{2} \sum_{i,j \in [d]} \frac{\partial^2}{\partial \mathbf{x}_i \partial \mathbf{x}_j} \left(\boldsymbol{\sigma}_t \boldsymbol{\sigma}_t^\mathsf{T}(\mathbf{x})_{ij} \pi(\mathbf{x}) \right)$$

• When $\mu = -\nabla V$ and $\sigma = \sqrt{2}I$,

$$\frac{\partial}{\partial t} \pi_t(\mathbf{x}) = \nabla \cdot \left(\nabla V(\mathbf{x}) \pi_t(\mathbf{x}) \right) + \Delta \pi_t$$
drift term heat equation term

Theorem. The stationary distribution for the Langevin dynamics is $\pi^* \propto \exp(-V)$ *Proof.*

- Let $U := -\log \pi^*$
- Stationary $\Leftrightarrow \frac{\partial}{\partial t} \pi_t(\mathbf{x}) = 0$
- $0 = \nabla \cdot (\nabla V(\mathbf{x})\pi^*(\mathbf{x})) + \Delta \pi^* = \nabla \cdot (\nabla V(\mathbf{x})\pi^*(\mathbf{x}) + \nabla \pi^*(\mathbf{x})) = \nabla \cdot ((\nabla V(\mathbf{x}) \nabla U(\mathbf{x}))\pi^*(\mathbf{x}))$ Solved by U = V + c

Spectral gap and the Dirichlet form

• Motivation: we want to understand the spectrum of \mathcal{L}^*

$$\frac{\partial}{\partial t} \pi_t = \mathcal{L}^* \pi_t \quad \Longrightarrow \quad \pi_t = \exp(t \mathcal{L}^*) \pi_0$$

If π^* is an eigenfunction of \mathcal{L}^* with eigenvalue 0 and all other eigenvalues are negative

Then
$$\pi_t \longrightarrow \pi^*$$
 as $t \longrightarrow \infty$

To quantitively analyze the convergence rate, we define the Dirichlet form:

$$\mathcal{E}(f,g) \coloneqq -\int f(\mathbf{x}) \mathcal{L}g(\mathbf{x}) \pi^*(\mathbf{x}) d\mathbf{x} \quad \forall f, g \colon \mathbb{R}^d \to \mathbb{R}$$
$$-\langle f, \mathcal{L}g \rangle_{\pi^*}$$

For the Langevin diffusion,

$$\mathcal{E}(f,g) \coloneqq \int \langle \nabla f(\mathbf{x}), \nabla g(\mathbf{x}) \rangle \pi^*(\mathbf{x}) d\mathbf{x}$$

Courant-Fischer:

$$\frac{v^{\mathsf{T}} A v}{v^{\mathsf{T}} v}$$

Dirichlet form

$$\mathcal{E}(f,g) \coloneqq \int \langle \nabla f(\mathbf{x}), \nabla g(\mathbf{x}) \rangle \pi^*(\mathbf{x}) d\mathbf{x}$$

- Langevin is reversible since $\mathcal{E}(f,g) = \mathcal{E}(g,f)$ $\langle \mathcal{L}f,g \rangle_{\pi^*} = \langle f,\mathcal{L}g \rangle_{\pi^*}$
- Constant function is an eigenfunction of \mathcal{E} with eigenvalue 0
- The spectral gap is captured by all eigenfunctions of ${\mathcal E}$ orthogonal to the constant function

$$gap := \min_{f \perp 1} \frac{\mathcal{E}(f, f)}{\langle f, f \rangle_{\pi^*}}$$

$$\mathcal{E}(f, g) = -\int \mathcal{L}f(\mathbf{x})g(\mathbf{x})\pi^*(\mathbf{x})d\mathbf{x} = \int \langle \nabla f, \nabla V \rangle g\pi^*d\mathbf{x} - \int \Delta f g\pi^*d\mathbf{x}$$

$$= \int \langle \nabla f, \nabla V \rangle g\pi^*d\mathbf{x} + \left(\int \langle \nabla f, \nabla g \rangle \pi^*d\mathbf{x} + \int \langle \nabla f, \nabla \pi^* \rangle gd\mathbf{x}\right) \qquad \pi^* \propto \exp(-V)$$

$$= \int \langle \nabla f, \nabla V \rangle g\pi^*d\mathbf{x} + \int \langle \nabla f, \nabla g \rangle \pi^*d\mathbf{x} - \int \langle \nabla f, \nabla V \rangle g\pi^*d\mathbf{x} = \int \langle \nabla f, \nabla g \rangle \pi^*d\mathbf{x}$$

Today's plan

- 1. Drift-diffusion processes
- 2. Markov semigroup
- 3. Optimal transport
- 4. Functional inequalities

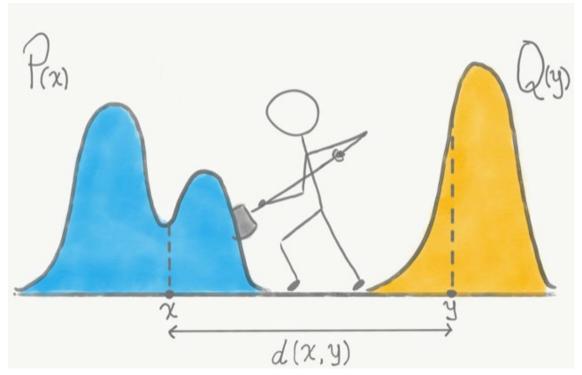
Highly recommend reference: Log-concave sampling by Sinho Chewi '25

Optimal transport

Wasserstein distance:

$$W_2(\mu, \pi) \coloneqq \inf_{\gamma \in \mathcal{C}(\mu, \pi)} \sqrt{\int \|x - y\|^2 \gamma(x, y) dx dy}$$

$$\gamma \text{ is a coupling of } \mu \text{ and } \nu$$



Optimal transport

Wasserstein distance:

$$W_2(\mu, \pi) \coloneqq \inf_{\gamma \in \mathcal{C}(\mu, \pi)} \sqrt{\int \|x - y\|^2 \gamma(x, y) dx dy}$$

Kantorovich: By the strong duality of LP,

$$W_2(\mu, \pi) \coloneqq \sup_{(f,g) \in \mathcal{D}(\mu, \pi)} \int f(x)\mu(x) dx + \int g(y)\nu(y) dy$$
$$\mathcal{D}(\mu, \nu) \coloneqq \left\{ (f,g) \in L^1 \mid f(x) + g(y) \le \frac{1}{2} \|x - y\|^2 \ \forall \ x, y \in \mathbb{R}^d \right\}$$

Brenier: the optimal coupling is $x \sim \mu$ and $y \leftarrow \nabla \phi(x)$ for some convex potential ϕ

• $\pi \propto \exp(-V)$ is μ -strongly logconcave if V is μ -strongly convex (i.e., $\nabla^2 V \geqslant \mu I$)

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* being μ -strongly logconcave. Then for all $t\geq 0$,

$$W_2^2(\pi_t, \pi) \le \exp(-2\mu t) W_2^2(\pi_0, \pi^*)$$

Proof.

We use the "coupling method":

• We get a coupling γ_t for (π_t, π^*) for every $t \ge 0$

• $\pi \propto \exp(-V)$ is μ -strongly logconcave if V is μ -strongly convex (i.e., $\nabla^2 V \geqslant \mu I$)

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* being μ -strongly logconcave. Then for all $t\geq 0$,

$$W_2^2(\pi_t, \pi) \le \exp(-2\mu t) W_2^2(\pi_0, \pi^*)$$

Proof.

We use the "coupling method":

o
$$d\mathbf{x}_t = -\nabla V(\mathbf{x}_t) dt + \sqrt{2} d\mathbf{B}_t$$

same
o $d\mathbf{x}_t^* = -\nabla V(\mathbf{x}_t^*) dt + \sqrt{2} d\mathbf{B}_t$

• We get a coupling
$$\gamma_t$$
 for (π_t, π^*) for every $t \ge 0$

$$\frac{\mathrm{d}}{\mathrm{d}s}(\mathbf{x}_{s} - \mathbf{x}_{s}^{\star}) = \nabla V(\mathbf{x}_{s}^{\star}) - \nabla V(\mathbf{x}_{s})$$

$$\Rightarrow \frac{\mathrm{d}}{\mathrm{d}s} \|\mathbf{x}_{s} - \mathbf{x}_{s}^{\star}\|^{2} = -2\langle \nabla V(\mathbf{x}_{s}) - \nabla V(\mathbf{x}_{s}^{\star}), \mathbf{x}_{s} - \mathbf{x}_{s}^{\star} \rangle$$

$$\leq -2\mu \|\mathbf{x}_{s} - \mathbf{x}_{s}^{\star}\|^{2}$$

by the strong convexity of V

• $\pi \propto \exp(-V)$ is μ -strongly logconcave if V is μ -strongly convex (i.e., $\nabla^2 V \geqslant \mu I$)

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* being μ -strongly logconcave. Then for all $t\geq 0$,

$$W_2^2(\pi_t, \pi) \le \exp(-2\mu t) W_2^2(\pi_0, \pi^*)$$

Proof.

We use the "coupling method":

$$d\mathbf{x}_t = -\nabla V(\mathbf{x}_t) dt + \sqrt{2} d\mathbf{B}_t$$
 same

$$d\mathbf{x}_t^{\star} = -\nabla V(\mathbf{x}_t^{\star}) dt + \sqrt{2} d\mathbf{B}_t$$

• We get a coupling γ_t for (π_t, π^*) for every $t \ge 0$

$$\begin{split} \frac{\mathrm{d}}{\mathrm{d}s}(\mathbf{x}_{S} - \mathbf{x}_{S}^{\star}) &= \nabla V(\mathbf{x}_{S}^{\star}) - \nabla V(\mathbf{x}_{S}) \\ \Rightarrow \frac{\mathrm{d}}{\mathrm{d}s} \|\mathbf{x}_{S} - \mathbf{x}_{S}^{\star}\|^{2} &= -2\langle \nabla V(\mathbf{x}_{S}) - \nabla V(\mathbf{x}_{S}^{\star}), \mathbf{x}_{S} - \mathbf{x}_{S}^{\star} \rangle \\ &\leq -2\mu \|\mathbf{x}_{S} - \mathbf{x}_{S}^{\star}\|^{2} \\ \Rightarrow \|\mathbf{x}_{t} - \mathbf{x}_{t}^{\star}\|^{2} &\leq \exp(-2\mu t) \|\mathbf{x}_{0} - \mathbf{x}_{0}^{\star}\|^{2} \\ \text{by Gronwall's inequality} \end{split}$$

• $\pi \propto \exp(-V)$ is μ -strongly logconcave if V is μ -strongly convex (i.e., $\nabla^2 V \geqslant \mu I$)

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* being μ -strongly logconcave. Then for all $t\geq 0$,

$$W_2^2(\pi_t, \pi) \le \exp(-2\mu t) W_2^2(\pi_0, \pi^*)$$

Proof.

• Since W_2 minimizes over all couplings, we have

$$W_2^2(\pi_t, \pi^*) \le \mathbb{E}_{(\mathbf{x}_t, \mathbf{x}_t^*) \sim \gamma_t} [\|\mathbf{x}_t - \mathbf{x}_t^*\|^2] \le \exp(-2\mu t) \, \mathbb{E}_{(\mathbf{x}_0, \mathbf{x}_0^*) \sim \gamma_0} [\|\mathbf{x}_0 - \mathbf{x}_0^*\|^2]$$

$$= \exp(-2\mu t) \, W_2(\pi_0, \pi^*)^2$$

Today's plan

- 1. Drift-diffusion processes
- 2. Markov semigroup
- 3. Optimal transport
- 4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi '25

Poincaré inequality

We say that π^* satisfies a Poincaré inequality with constant $\mathcal{C}_{\mathrm{PI}}$ if for all differentiable f,

$$\operatorname{Var}_{\pi^{\star}}[f] \leq C_{\operatorname{PI}} \int \|\nabla f(\mathbf{x})\|^{2} \pi^{\star}(\mathbf{x}) d\mathbf{x}$$
$$\langle f, f \rangle_{\pi^{\star}} \qquad \mathcal{E}(f, f)$$

Poincaré inequality is equivalent to the statement that

gap :=
$$\min_{f \perp 1} \frac{\mathcal{E}(f, f)}{\langle f, f \rangle_{\pi^*}} \ge \frac{1}{C_{\text{PI}}}$$

• The χ^2 divergence between μ and ν is defined as:

$$\chi^2(\mu||\nu) \coloneqq \int \left(\frac{\mu(x)}{\nu(x)}\right)^2 \nu(x) dx - 1$$

PI \Longrightarrow convergence in χ^2 divergence

Convergence from Poincaré inequality

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* satisfying a Poincaré inequality with constant C_{PI} . Then for all $t\geq 0$,

$$\chi^2(\pi_t \| \pi^*) \le \exp\left(-\frac{2t}{C_{\text{PI}}}\right) \chi^2(\pi_0 \| \pi^*)$$

Proof.

$$\frac{\mathrm{d}}{\mathrm{d}t} \chi^{2} \left(\pi_{t} \| \pi^{\star} \right) = \frac{\mathrm{d}}{\mathrm{d}t} \int \left(\frac{\pi_{t}(\mathbf{x})^{2}}{\pi^{\star}(\mathbf{x})^{2}} - 1 \right) \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x} = 2 \int \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})} \right) \left(\frac{\partial}{\partial t} \frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})} \right) \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x}$$

$$= 2 \int \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})} \right) \left(\frac{\mathcal{L}^{*}\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})} \right) \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x} = -2\mathcal{E}\left(\frac{\pi_{t}}{\pi^{\star}}, \frac{\pi_{t}}{\pi^{\star}} \right)$$

$$\leq -\frac{2}{C_{\mathrm{PI}}} \mathrm{Var}_{\pi^{\star}} \left[\frac{\pi_{t}}{\pi^{\star}} \right] = -\frac{2}{C_{\mathrm{PI}}} \chi^{2} \left(\pi_{t} \| \pi^{\star} \right)$$

Log-Sobolev inequality

We say that π^* satisfies a log-Sobolev inequality with constant C_{LSI} if for all differentiable f,

$$\operatorname{Ent}_{\pi^{\star}}[f^{2}] \leq 2C_{\operatorname{LSI}} \int \|\nabla f(\mathbf{x})\|^{2} \pi^{\star}(\mathbf{x}) d\mathbf{x}$$

where $\operatorname{Ent}_{\pi^*}[f] \coloneqq \mathbb{E}_{\pi^*}[f \log f] - \mathbb{E}_{\pi^*}[f] \log \mathbb{E}_{\pi^*}[f]$.

Equivalently,

$$D_{\mathrm{KL}}(\pi \| \pi^*) \leq \frac{C_{\mathrm{LSI}}}{2} \int \left\| \nabla \log \frac{\pi(\mathbf{x})}{\pi^*(\mathbf{x})} \right\|^2 \pi(\mathbf{x}) d\mathbf{x}$$

where $D_{\mathrm{KL}}(\pi \| \pi^*) \coloneqq \int \pi(\mathbf{x}) \log \left(\frac{\pi(\mathbf{x})}{\pi^*(\mathbf{x})} \right) \mathrm{d}\mathbf{x}$

Fisher information

LSI ⇒ convergence in KL divergence

Convergence from log-Sobolev inequality

Theorem. Let $\{\mathbf{x}_t\}_{t\geq 0}$ follow the Langevin diffusion with stationary distribution π^* satisfying a log-Sobolev inequality with constant C_{LSI} . Then for all $t\geq 0$,

$$D_{\mathrm{KL}}(\pi_t \| \pi^*) \le \exp\left(-\frac{2t}{C_{\mathrm{LSI}}}\right) D_{\mathrm{KL}}(\pi_0 \| \pi^*)$$

Proof.

$$\frac{\mathrm{d}}{\mathrm{d}t} D_{\mathrm{KL}}(\pi_{t} \| \pi^{\star}) = \frac{\mathrm{d}}{\mathrm{d}t} \int \pi_{t}(\mathbf{x}) \log \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right) \mathrm{d}\mathbf{x} = \int \log \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right) \left(\frac{\mathcal{L}^{*}\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right) \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x}$$

$$= -\mathcal{E}\left(\frac{\pi_{t}}{\pi^{\star}}, \log \left(\frac{\pi_{t}}{\pi^{\star}}\right)\right) = -\int \left|\nabla \log \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right), \nabla \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right)\right| \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x}$$

$$= -\int \left\|\nabla \log \left(\frac{\pi_{t}(\mathbf{x})}{\pi^{\star}(\mathbf{x})}\right)\right\|^{2} \pi^{\star}(\mathbf{x}) \mathrm{d}\mathbf{x} \leq -\frac{2}{C_{\mathrm{LSI}}} D_{\mathrm{KL}}(\pi_{t} \| \pi^{\star})$$

LSI vs PI convergence

$$\chi^2(\pi_t \| \pi^*) \le \exp\left(-\frac{2t}{C_{\text{PI}}}\right) \chi^2(\pi_0 \| \pi^*)$$

$$D_{\mathrm{KL}}(\pi_t \| \pi^*) \leq \exp\left(-\frac{2t}{C_{\mathrm{LSI}}}\right) D_{\mathrm{KL}}(\pi_0 \| \pi^*)$$

LSI provides stronger convergence guarantee than PI since KL divergence can be exponentially smaller than χ^2 divergence

- π_0 is a β -warm start w.r.t. π^* if $\frac{\pi_0(\mathbf{x})}{\pi^*(\mathbf{x})} \leq \beta$ for all $\mathbf{x} \in \mathbb{R}^d$
- $\cdot \quad \chi^2(\pi_0 \| \pi^*) \le \beta^2$
- $D_{\mathrm{KL}}(\pi_0 \| \pi^*) = \mathbb{E}_{\pi_0}[\log(\pi_0/\pi^*)] \leq \log \beta$

LSI and PI constants

Lemma. If π satisfies a log-Sobolev inequality with constant C, it also satisfies a Poincaré inequality with constant C.

How to determine the LSI or PI constant?

$$\mu$$
-strongly logconcave $\implies C_{\rm PI} = \frac{1}{\mu}$ (Brascamp-Lieb inequality) $\implies C_{\rm LSI} = \frac{1}{\mu}$ (Bakry-Émery thoerem)

LSI / PI implies concentration

Lemma. Let π^* satisfies a log-Sobolev inequality with constant C_{LSI} . Then for any 1-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$, we have that

$$\Pr_{\mathbf{x} \sim \pi^{\star}}[f(\mathbf{x}) \ge \mathbb{E}_{\pi^{\star}}[f] + \epsilon] \le \exp\left(-\frac{\epsilon^2}{2C_{\mathrm{LSI}}}\right) \quad \forall \ \epsilon > 0 \qquad \text{sub-Gaussian}$$

Lemma. Let π^* satisfies a Poincaré inequality with constant C_{PI} . Then for any 1-Lipschitz function $f: \mathbb{R}^d \to \mathbb{R}$, we have that

$$\Pr_{\mathbf{x} \sim \pi^{\star}}[f(\mathbf{x}) \ge \mathbb{E}_{\pi^{\star}}[f] + \epsilon] \le 3 \exp\left(-\frac{\epsilon}{\sqrt{C_{\mathrm{PI}}}}\right) \quad \forall \ \epsilon > 0 \qquad \text{sub-exponential}$$