CS 59300 — Algorithms for Data Science
Classical and Quantum approaches

Lecture 12 (10/21)
Stochastlc Calculus

https:Ilruizhezhang.comlcoufse fall 2025.html

Slides are based on Kevin Tian’s lecture notes and Sitan Chen’s slides



https://ruizhezhang.com/course_fall_2025.html

Motivation

- Stochastic calculus is the mathematical tool to study sampling and generative modeling
in @ continuous space (and continuous time)

- An analog is the traditional calculus for Gradient flow «= Gradient descent

- Itis also a prerequisite for appreciating Eldan’s stochastic localization

- In the mean-field approximation, we use only a single “snapshot” of the stochastic
localization at a fixed time
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Today’s plan

1. Drift-diffusion processes
2. Markov semigroup

3. Optimal transport

4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi ’25
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Today’s plan

1. Drift-diffusion processes

Highly recommend reference: Log-concave sampling by Sinho Chewi ’25
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Brownian motion

(B,) ;>0 € R% is a stochastic process (random sequence of vectors indexed by t) such that:
- Starts at origin: By = 0 is the origin in R4
- Continuous paths: With prob. 1 over the randomness, t = B, is continuous

- Independent increments: Forall 0 = t5 <t; <.+ < ty, the random vectors B;,, — B, for
0 < i < k are mutually independent

 Gaussian increments: Forall0 < s <t,B; — B, ~N(0,(t —s)I)

The probability space that Brownian motion is defined on is denoted {F;};s(, a filtration satisfying F, S F,
forall 0 < s < t. We say that Brownian motion is a stochastic process adapted to the filtration {F;}:>¢

“F; contains the information of the randomness used up to time t”
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Stochastic integrals

Given continuous process (H;);»o € R%* % adapted to the filtration generated by (B;);s0, the 1td integral

t
thJ HS dBS
0

is the stochastic process whose value at time t is the random vector given by taking the probability limit
over meshes P = {ty Jxeqp) € [0, ] suchthat 0 = t5 < -+ < tjp| = t:

k

t
jo H dB; = ||p||1§19,£r;_>oj=1 H, - ( i1 Btj)

where ”P”gap = krél[?g(l]ltk — tg-1l
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Stochastic integrals

A t : : :
The It6 integral x; = fo H, dB; is a continuous martingale

Continuity: With prob. 1 over the randomness, t = X; is continuous

Martingale: E [fst H. dB,

|=0

1t6 isometry:

2

t
E - IE[ j ||HS||%st]
0

Intuition: E[(a, g, + a,g, + - + axgy)?] = a? + --- + af for g4, ..., g ~N(0,1)

t
f H, dB,
0

“dB# = dt” (because B;,4r — B ~ N (0, dt))
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Drift-diffusion processes

A drift-diffusion process {X;};>o on R? is driven by a vector-valued function u: R - R% and a matrix-
valued function a: R% = R%*4 and captured by the stochastic differential equation (SDE):

dx, = u(x,)dt + o(x;)dB;

We can write this stochastic process in integral form:

t
Xt=X0+j
0

u(x,)de +J o(x;)dB; (1td process)
0

/ Deterministic force (udt)

-

t
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Drift-diffusion processes

A drift-diffusion process {X;};>o on R? is driven by a vector-valued function u: R - R% and a matrix-
valued function a: R% = R%*4 and captured by the stochastic differential equation (SDE):

dx, = u(x,)dt + o(x;)dB;
We can write this stochastic process in integral form:

t

t
Xt =Xg t+ j p(x,)dt + J o(x;)dB; (1t6 process)
0 0

Technically need to check such a process exists and is uniquely defined, which holds under mild
conditions on i and o (e.g. Lipschitzness)

SDEs can be defined w.r.t. more general process, e.g. U; and o;

Euler—Maruyama discretization: X(x41yn < Xgn + Ap(Xyp) + VhoZen)g g~ N,
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Important example: Langevin diffusion

Given differentiable V: R¢ — R, consider
dx, = —-VV(x,) dt + V2 dB, “gradient descent + noise”
i.e. g =—-Vando =+2I

vV

m* X e~ is a stationary distribution of Langevin diffusion (and is unique under certain assumptions on

V)
By Euler-Maruyama discretization, we get the Unadjusted Langevin Algorithm (ULA):
k\(k+1)h «— k\kh — hVV(xt) +V2h g for g ~ N(O, I)
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Ornstein-Uhlenbeck process

If we take V(x) = ||x]|?/2, we have
dXt - _Xt dt + \/i dBt

whose stationary distribution is given by N (0, Id).
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Stochastic chain rule

Let f: RY - R be twice-differentiable, and suppose {X;};»o follows the SDE:
dx; = u:(X¢)dt + 0+(X)dB;

Then {f (X;)}:so is a stochastic process following the SDE:

1
df (x;) = ((Vf (X¢), e (X)) + 5 (V2f(x¢), 0 (x() 0, (Xt)T>) dt +(Vf(x¢), 0 (X¢)dBy)

Proof sketch:

X;ipn = Xp + hu(x,) +Vh o(x.)g for g ~ N(0,1)
Taylor expand f (X;,) and only keep first-order (i.e. O(h)) terms:

1
df (X¢) = f(Xeen) — f(Xp) = (Vf(xt), hu(x,) + ﬁo’("t)ﬂ) + szf(xt)' hU(Xt)QQTU(Xt)T>

Vh ~
~ h((Vf(x,), u(x,)) + (V2 f(x), 0(x)o(x)T)) + 7<Vf(xt); o(Xt)g) :
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Stochastic chain rule

Let f: R% - R be twice-differentiable, and suppose {X;};»o follows the SDE:
dx; = u:(X¢)dt + 0+(X)dB;

Then {f (X;)}:s( is a stochastic process following the SDE:

1
df (x;) = ((Vf (X¢), e (X)) + 5 (V2f(x¢), 0 (x() 0 (Xt)T>) dt +(Vf(x¢), 0 (X¢)dBy)

Consider the Langevin diffusion: dx, = —VV (x,) dt + v/2 dB,

By It6’s lemma,
df(xt) = (_<Vf' VV) + Af)dt + ﬁ(vf' dBt)
Af = tr[V*f]
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Today’s plan

2. Markov semigroup

Highly recommend reference: Log-concave sampling by Sinho Chewi ’25
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Dual view on SDEs

- Move to the density space SD(IRd) (i.e. the set of continuous prob. densities on R%)

In discrete setting, the evolution of prob. density is characterized by the Markov chain transition matrix
P € IRDXD: Ty = PTL’t

For a drift-diffusion process {X;};>¢, we define the Markov semigroup {P; };s¢:
(Pef)(X) = E[f(X¢) | xg = X] for f: R? - R
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Markov semigroup

For a drift-diffusion process {X;};>¢, Wwe define the Markov semigroup {P; };s¢:
(Pef)(X) = E[f (X¢) | Xo = X] for f:R* » R
If f = 15 for asubset S, then (P:f)(x) = Pr[x; € S | xq = X]

Markov property:
Pioof =P, Pf =PPf Vf:R*>RVs,t=>0

Generator:

P. —
Lf = lim nf —J
-0 7

Kolmogorov’s backward equation. Forallt = 0 and f:R% - R, it holds that

d
Eptf=LPtf=Pfo
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Kolmogorov’s equations

Kolmogorov’s backward equation. Forallt = 0 and f: R% - R, it holds that
9]
aptf:LPtf:Pfo

Proof.

—

LP,f = lim Pf=limpt+"_Ptf=1imPPn_POf=PLf
t 17—0 77 t 17—0 77 170 t 77 t

PT]_PO

Kolmogorov’s forward equation. Let P; be the adjoint of P:
Bl (o)) = [ ELFGx) [0 = xlmo(0ddx = [ Pef GmoGdx = [ £GOP: o ()
Then, (Ptf;n0> — <f,P£kT[0>

d
_P;T[O :L*Pgn'o = P;L*T[O
at\_,_;

Tt
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Kolmogorov’s forward equation for drift-diffusion process

9,
- T[t — L*T[t

dt

Let {x;};>0 follows dx; = u,(x;)dt + 6,dB; and X, ~ m,. Thenforallt > 0,
denoting the law of x; by m;, we have

9, 1 02
(0 = =V (0T (0) +5 ) (0007 @y )

dt - aXian
Lj€ld]
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Proof of Fokker-Planck equation

Recall that df (x) = ((Vf (%), (%)) + 5 (V2 f (%), 0, ()0 (x)T) ) dt +

+ Then dELF ()] = ({V/ (0, 1. () + %(V:f(X), 0o dt

Pf (X) L)

- Thus, for all prob. densities m,

1
j fELm(x)dx = j Lf(x)m(x)dx = j <(Vf (%), pe (X)) + szf (%), Gt(X)Gt(X)T)> m(x)dx

(Integral by parts) = J (—f(x)V- (ut(x)n(x)) — %(Vf(x),v- (at(x)at(x)Tn(x)))) dx

(Integral by parts) Jf(x) (—V (ut(x)n(x))+ z ox, atat (X)Un(x))>

l]Ed
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Proof of Fokker-Planck equation

Recall that df (x) = ((Vf (%), (%)) + 5 (V2 f (%), 0, ()0 (x)T) ) dt +

+ Then dELF ()] = ({V/ (0, 1. () + %(V:f(X), 0o dt

Pf (X) L)

- Thus, for all prob. densities m,

1
| oL meoax = | f(X)<—V (1) +5 2, 315 (0.7 (x)un(x)))

iI,jeld

|
L*1(X)

o ) . a %k
- Then it follows from the Kolmogorov’s forward equation 5.t = L1,
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Fokker-Planck equation for the Langevin diffusion

aZ
T '
o (9101 0y (0)

0 1
() = =V (B GOmX0) +5 )

i,jeld]
When u = —VV and ¢ = V2],
%nt(x) =V (WX, (x)) +
drift term
Theorem. The stationary distribution for the Langevin dynamicsis ™ « exp(—V)
Proof.

Let U := —logm™

Stationary & %nt(x) =0

0=V- (WX X)) +Ar* = V- (WET*X) + Vr*(x)) = V- ((VV(X) —VU()) n*(x))
SolvedbyU =V + ¢
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Spectral gap and the Dirichlet form

Motivation: we want to understand the spectrum of L*

0
5.7t = L'y = 1w =exp(tL?)m,

If T* is an eigenfunction of L* with eigenvalue 0 and all other eigenvalues are negative

Thenm; — m*ast — ©

To quantitively analyze the convergence rate, we define the Dirichlet form:

E(f.g) = - j FXLg@T XX Vf,g:Re >R

_<fl Lg>7'[*
For the Langevin diffusion,

E(f,g) = j (Vf(X), Vg (0)m* (x)dx
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Dirichlet form

E(f,g) = j (VF (X), Vg (0)m* (x)dx

Langevin is reversible since E(f, g) = (g, f) (Lf, @) = {f, LG)

Constant function is an eigenfunction of £ with eigenvalue 0

The spectral gap is captured by all eigenfunctions of £ orthogonal to the constant function
oap = min EXf.f)
L1 Af, )

E(f,g) = —ij(x)g(x)n*(x)dx= j(Vf,VV)gn*dx—JAfgn*dx

(1.B.P.)
— j (Vf,VV)gm*dx + j (Vf,Vg)r*dx + f (Vf,Vn™)gdx * o exp(—V)

= f(Vf, VV)gm*dx + f(Vf, Vg)n*dx — j(Vf, VV)gm*dx = j(Vf, Vg)m*dx
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Today’s plan

3. Optimal transport

Highly recommend reference: Log-concave sampling by Sinho Chewi ’25
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Optimal transport

Wasserstein distance:

W,(u,m) == inf Jfllx—yllzy(x,y)dxdy

YEC(u,m)
o

y is a coupling of u and v

Qe

AR
e
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Optimal transport

Wasserstein distance:

yeC(u,m)

Wo(u,m) == inf \/jllx — y|[?y(x, y)dxdy
Kantorovich: By the strong duality of LP,

Wy(un) =  sup j FOu()dx + j IOV dy

(f,.9)€D(u,m)

D(uv) ={(f.9) € 1' | FG) + g < 5llx = yI* v,y € RY]

Brenier: the optimal couplingis x ~ andy « V¢ (x) for some convex potential ¢
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Wasserstein convergence of Langevin dynamics

T « exp(=V) is p-strongly logconcave if V is u-strongly convex (i.e., V2V = ul)

Theorem. Let {X;};>( follow the Langevin diffusion with stationary distribution 7* being u-
strongly logconcave. Then for all t = 0,
W5 (rr, ) < exp(—2put) W5 (mo, ")

Proof.
We use the “coupling method”:
o dx, = -VV(x,) dt + 2 dB,
same (Xg,Xp) ~ Yo the optimal coupling for W, (g, m*)
o dx} = -VV(x})dt++2 dB,

We get a coupling y; for (., m*) forevery t > 0

October 21, 2025 26



Wasserstein convergence of Langevin dynamics

T « exp(=V) is p-strongly logconcave if V is u-strongly convex (i.e., V2V = ul)

Theorem. Let {X;};>( follow the Langevin diffusion with stationary distribution 7* being u-
strongly logconcave. Then for all t = 0,
W5 (rr, ) < exp(—2put) W5 (mo, ")

Proof.
We use the “coupling method”: d
o dx, = —-VV(x,) dt ++/2 dB, ds (6 = %5) = VVixs) = VVixe)
same = Tl X3 = 2TV () — TV (x3), X, —x3)
o dxF=-VV(x})dt+ 2 dB, < —2pllxs — x5l|?

We get a coupling y; for (r;, m*) for every t > 0 by the strong convexity of V
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Wasserstein convergence of Langevin dynamics

T « exp(=V) is p-strongly logconcave if V is u-strongly convex (i.e., V2V = ul)

Theorem. Let {X;};>( follow the Langevin diffusion with stationary distribution 7* being u-
strongly logconcave. Then for all t = 0,
W5 (rr, ) < exp(—2put) W5 (mo, ")

Proof.
We use the “coupling method”: d
o dx, = —-VV(x,) dt ++/2 dB, ds (6 = %5) = VVixs) = VVixe)
same = Tt~ X312 = —2(WV (x) —~ V), %, — x3)
o dxF=-VV(x})dt+ 2 dB, < —2pllxs — x5l|?
= |Ix; — x711* < exp(—2ut) lIxo — x5l

We get a coupling y; for (., m*) forevery t > 0
by Gronwall’s inequality
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Wasserstein convergence of Langevin dynamics

T « exp(=V) is p-strongly logconcave if V is u-strongly convex (i.e., V2V = ul)

Theorem. Let {X;};>( follow the Langevin diffusion with stationary distribution 7* being u-
strongly logconcave. Then for all t = 0,
W5 (rr, ) < exp(—2put) W5 (mo, ")

Proof.
Since W, minimizes over all couplings, we have

W3 (e, ) < Egx, xt)~y, LIXe = X271 < exp(=2ut) Ex, x5)~y, LIXo — X517]
= exp(—2put) W, (o, *)?
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Today’s plan

4. Functional inequalities

Highly recommend reference: Log-concave sampling by Sinho Chewi ’25
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Poincaré inequality

We say that ™ satisfies a Poincaré inequality with constant Cpy if for all differentiable f,

Vary:[f] < Cor j 1V GO l12m* (30 dx

<fif>7'[* 8(fif)
Poincaré inequality is equivalent to the statement that
&, f) 1
gap := min >

L1 Af, e~ Cp

The y? divergence between u and v is defined as:

2
x4 (ullv) =f<%> v(x)dx — 1

Pl = convergence in y? divergence
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Convergence from Poincaré inequality

Theorem. Let {X;}:>( follow the Langevin diffusion with stationary distribution * satisfying a
Poincaré inequality with constant Cp;. Then forallt = 0,

2t

() < exp (o) (ol

Proof.

d N ((m? N\ Lm0\ [0 Y,
a)(Z(nt”n ) = EJ (n*(x)z — l)n (x)dx = 2J<n*(x)) <0tn*(x))n (x)dx

_ e (X)\ (L' (X)) _ Ty Tt
- ZJ <n*(x))< () )” (9dx = —2¢ (11, 5)
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Log-Sobolev inequality

We say that ™ satisfies a log-Sobolev inequality with constant Cy gy if for all differentiable f,
Ente[£2] < 2651 [ V70Ol (0dx

where Enty+[f] :== Ep+[f log f] — Ep+[f]log En+[f].

Equivalently,
Dy (| LSIJ HVl og *( ) n(x)dx
where Dy (r||7*) = [ m(x) log (;((’2)) dx Fisher information

LS| = convergence in KL divergence
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Convergence from log-Sobolev inequality

Theorem. Let {X;}:>o follow the Langevin diffusion with stationary distribution * satisfying a
log-Sobolev inequality with constant Cy.q;. Then forall t = 0,

2t
Dy (¢ ||*) < exp (‘ o : )DKL(T[O“T[*)
LSI

Proof.

d d L
EDKL(T[t”T[*) = Ej m:(X) log <Zig3> dx = Jlog (Zigg) < nféi?) m*(x)dx
_ Tl e\ 1 (X) ¢ (X) N
= —& (;,log (;)) = — J <V log (n*(x))'v<n*(x)>>n (x)dx
2
- [ (5)

October 21, 2025 34

2
m*(x)dx < —C—DKL(nt”n*)
LSI




LSI vs Pl convergence

2t

2l < exp (- 2o ) o)

2t
D (e} ) < exp (— ?ﬂ) D (o)

LS| provides stronger convergence guarantee than Pl since KL divergence can be exponentially smaller than
x? divergence

Ty iS a start w.r.t. m* if

x%(mo||*) < B?

DKL(nO”n*) = Ep [log(my/m*)] < logp
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LS| and Pl constants

Lemma. If T satisfies a log-Sobolev inequality with constant C, it also satisfies a Poincaré inequality with

constant C.

How to determine the LSI or Pl constant?

u-strongly logconcave = C(p; =i (Brascamp-Lieb inequlity)

= Cpgg =i (Bakry—Emery thoerem)
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LS| / Pl implies concentration

Let ™ satisfies a log-Sobolev inequality with constant Cyg;. Then for any 1-Lipschitz function
f:R% - R, we have that

£2
Pr [f(x) = E«[f]+ €] <exp|-— Ve>0 sub-Gaussian
X~T* ZCLSI

Let T* satisfies a Poincaré inequality with constant Cpy. Then for any 1-Lipschitz function f: R% —
R, we have that

Pr [f(%) > Ep[f] + €] < 3exp <—

X~TC

) Ve>0 sub-exponential

€
JCer
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